A. 3 Calculus

A.15. Integration by parts is a technique for simplifying integrals of the form

$$
\int a(x) b(x) d x
$$

In particular,

$$
\begin{equation*}
\int f(x) g^{\prime}(x) d x=f(x) g(x)-\int f^{\prime}(x) g(x) d x \tag{58}
\end{equation*}
$$

Sometimes it is easier to remember the formula if we write it in differential form. Let $u=f(x)$ and $v=g(x)$. Then $d u=f^{\prime}(x) d x$ and $d v=g^{\prime}(x) d x$. Using the Substitution Rule, the integration by parts formula becomes

$$
\begin{equation*}
\int u d v=u v-\int v d u \tag{59}
\end{equation*}
$$

- The main goal in integration by parts is to choose u and $d v$ to obtain a new integral that is easier to evaluate then the original. In other words, the goal of integration by parts is to go from an integral $\int u d v$ that we dont see how to evaluate to an integral $\int v d u$ that we can evaluate.
- Note that when we calculate v from $d v$, we can use any of the antiderivative. In other words, we may put in $v+C$ instead of v in (59). Had we included this constant of integration C in (59), it would have eventually dropped out. This is always the case in integration by parts.

For definite integrals, the formula corresponding to (58) is

$$
\begin{equation*}
\int_{a}^{b} f(x) g^{\prime}(x) d x=\left.f(x) g(x)\right|_{a} ^{b}-\int_{a}^{b} f^{\prime}(x) g(x) d x \tag{60}
\end{equation*}
$$

The corresponding u and v notation is

$$
\begin{equation*}
\int_{a}^{b} u d v=\left.u v\right|_{a} ^{b}-\int_{a}^{b} v d u \tag{61}
\end{equation*}
$$

It is important to keep in mind that the variables u and v in this formula are functions of x and that the limits of integration in (61) are limits on the variable x. Sometimes it is helpful to emphasize this by writing (61) as

$$
\begin{equation*}
\int_{x=a}^{b} u d v=\left.u v\right|_{x=a} ^{b}-\int_{x=a}^{b} v d u \tag{62}
\end{equation*}
$$

Repeated application of integration by parts gives
$\int f(x) g(x) d x=f(x) G_{1}(x)+\sum_{i=1}^{n-1}(-1)^{i} f^{(i)}(x) G_{i+1}(x)+(-1)^{n} \int f^{(n)}(x) G_{n}(x) d x$
where $f^{(i)}(x)=\frac{d^{i}}{d x^{i}} f(x), G_{1}(x)=\int g(x) d x$, and $G_{i+1}(x)=$ $\int G_{i}(x) d x$.

A convenient method for organizing the computations into two columns is called tabular integration by parts shown in Figure 45 which can be used to derived (63).

Figure 45: Integration by Parts

Figure 46: Examples of Integration by Parts using Figure 45.

